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ABSTRACT

This report presents the theory, computer program and numerical
results for an axial slot antenna on a circular cylinder.
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I. INTRODUCTION

We consider an axial slot antenna on a perfectly conducting circular
cylinder. The cylinder is partially coated with a dielectric layer, and
the antenna radiates through this flush-mounted window. The motivation
for this study is to determine the effects of a high-temperature dielectric
layer on the performance of antennas mounted on a space shuttle.

For an axial slot antenna on a circular cylinder completely coated
with a dielectric layer, the admittance and patterns have been investigated
by Knop[l], Fante[2], and Croswell, Westrick and Knop[3]. Our analysis has
some similarity to that of Billingsley and Sinclair[4] for scattering by
circular-sector cylinders.

The following sections define the problem and present the theory,
computer programs and some numerical results.

II. THEORY

Consider an axial slot antenna on a perfectly conducting circular
cylinder as illustrated in Fig. 1. The inner aperture has radius "a" and

X
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RADIUS a

RADIUS b

Fig. 1. An axial-slot antenna radiates through a flush-mounted
dielectric window in a conducting circular cylinder.
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half-angle 4. The outer aperture has radius b and half-angle cc. The
exterior medium is free space. The inner slot radiates through a flush-
mounted homogeneous dielectric window with permittivity e1, permeability
~1, inner radius a, outer radius b and half-angle *b. The metallic flange
prevents the dielectric window from falling out. This cylindrical structure
has infinite length, and its axis coincides with the z axis. We consider
a time-harmonic excitation with the time dependence ejwt understood, and
the fields have no z dependence. This report considers the TE polarization
in which the non-zero field components are Ep, E and Hz. Given an even
field distribution E over the inner aperture, the objective is to deter-
mine the aperture admittance, gain and far-field pattern of this antenna.
Our solution employs cylindrical-mode expansions and Galerkin's method.

The field in region I (the dielectric window) is

(1) E -p k [c k vJ(p) + dk N (p)] sinv

(2) E = jn1 [ck J(p) + dk N'(p)] cosv

(3) Hz =  I [ck Jv(p) + dk N (p)] cosv

(4) k1  I

(5) nI  18E

(6) v = kf/ b

where the integer k runs from zero to infinity and (p,o,z) are the
cylindrical coordinates. (In this report the symbols J,(p) and N,(p)
denote the Bessel and Neumann functions with order v and argument klp.)
This field satisfies the source-free version of Maxwell's equations in
region I. From Eqs. (1) and (6), tangential E vanishes at the perfectly
conducting surfaces at = ± Ob. The expansion constants ck and dk are
to be determined from the boundary conditions.

The voltage across the inner aperture is
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Oa

(7) V =2a E d

where E denotes E (a,o). (We assume the aperture field E is a specified
even function of $.) The external admittance of the inner aperture is

2 a
(8) Y= 2a E* H(a,o)d

The boundary condition at p = a is

(9) Ei E for 0 < 0 < 0bE for 0 < <
for Qa b

From Eqs. (2) and (9) with Fourier analysis,

(10) jnl ob [Ck Jv(a) + dk N'(a)] = ek Gk

a
(11) Gk = E cosv, do

where eo = 1 and ek = 2 for k = 1, 2, 3***

From Eqs. (3) and (8), the external admittance (per unit length of cylinder)
of the inner aperture is

(12) Y =2 [ck J(a) + dk N,(a)] G

The field in region II (the exterior free-space region) is

(13) EI J(13 kP i ai Hi(P) sin io

(14) E = j a. H!(p) cos io
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(15) Hz  = . ai Hi (p) COS i4
z 1

(16) k =W

(17) no l

where the integer i runs from zero to infinity. (In this report the symbol
Hi(p) denotes the Hankel function with order i and argument kop and the
superscript (2) is understood. The argument k1p will not be encountered
with the Hankel function.) This field satisfies the radiation conditions
and the source-free version of Maxwell's equations.

To complete the solution, it remains only to enforce the boundary
conditions at p = b. The rigorous solution involves an infinite system
of simultaneous linear equations. We desire an accurate approximation
involving a finite system of simultaneous linear equations. To develop
a solution of this type, we expand the field in the outer aperture
(at p = b) as follows:

(18) E =I bn cos(nwr/ c) for 0 < 4 < c
n

where n runs from zero to N. If the constants bn were known, the remaining
constants (ai, ck and dk) could be determined. In this sense the bn are
independent unknowns, and the others are dependent. When the simultaneous
linear equations are written as a matrix equation, the square matrix will
be symmetric if the bn are chosen as the independent quantities.

From Eq. (2) and the boundary condition on E at p = b,

E for 0 < 0 < c
(19) jn1 [ck Jv(b) + dk N'(b)] cosv 0 for

0 for pc < 4 < b

where E is defined by Eq. (18). Multiplying both sides of Eq. (19) by
cosv a~d integrating over the range 0 < 0 < *b yields

(20) jnl Ob [Ck Jv(b) + dk N'(b)] = ek I bn Fkn
n
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C
(21) F = cos(klr/4b) cos(n /c) d

SJob

From Eqs. (10) and (20),

(22) Ck = k k N(b) - N(a) bn Fkn]

(23) d k k Gk J(b) + J'(a) n bn Fkn]

e
(24) Pk

k jl b[' (a) N'(b) - J'(b) N'(a)]

From Eq. (14) and the boundary condition on EI' at p = b,

E for 0 < 4 < c
(25) in0  ai H!(b) cos i = c

S0 for Oc < <

where EO is defined by Eq. (18). Multiplying both sides of Eq. (25) by
cos if and integrating over the range 0 < 4 < rr yields:

e.
(26) ai = b bn Gin

jTnoH (b) n

Oc
(27) Gin = cos(if) cos(nT/4hc) d .

Equations (22)-(26) show explicitly that a knowledge of the constants
bn is sufficient to determine all the other constants.

At this point we have used the boundary conditions on E to relate
ai, ck and dk to bn. The next step is to use the boundary condition on
Hz to generate a system of simultaneous linear equations for the constants
bn. From Eqs. (3) and (15) and continuity of tangential H across the
outer aperture (at p = b):

5



(28) ai Hi(b) cos it = J [ck J(b) + dk N (b)] cosvo
i k

where # ranges from zero to Oc. In Eq. (28), multiplying both sides by
cos(mvO/Oc) and integrating from 0 = 0 to = 9c yields

(29) I ai Hi(b) Gi. = [ J[ck  (b) + dk N (b)] Fkm.
i k

In matching Hz across the aperture, we selected the same weighting
function cos(nmr¢/c) also used as a basis function in Eq. (18). This is
the distinctive feature of Galerkin's method. If Eqs. (22), (23) and (26)
are used to eliminate ai, ck and dk, Eq. (29) yields:

(30) 1 Zmn bn = Vm  with m = 0, 1, 2, ... N
n

2 jn1 b(31) V 2 in b P G Fm
m k b k k km

1  c k

S ~l e " H .(b ) G. G.
(32) Z b [l 1 1 im Gin +e R Fmn - no i H!(b) k k kmc 1 1 b k

J (b) N'(a) - J'(a) N,(b)
(33) Rk J(a) N(b) - J'(b) N'(a)v v v v

Equation (30) is recognized as a system of simultaneous linear equations.
In the summation, n runs from zero to N. Equation (30) can also be
written as a matrix equation. The symmetry of the square matrix Zmn is
obvious in Eq. (32).

The matrix equation is solved with a digital computer to obtain
numerical values for bn. Then Eqs. (22), (3) and (26) are employed to
determine ck, dk and ai. The aperture admittance is obtained from Eq. (12).
The far-field pattern is obtained from Eq. (15) as follows:

(34) Hz = e-jkp ai j cos i.
7rkp 
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The power gain is calculated as follows:

2rpn IHz(p, )I2

(35) Gp () = o z
(3)VV*G

where the aperture voltage V is given by Eq. (7) and the aperture con-
ductance G is the real part of Y in Eq. (12).

III. NUMERICAL RESULTS

Figures 2-6 illustrate the far-field patterns of an axial slot
antenna radiating through a lossless window with dielectric constant of
1, 1.2, 2, 3 and 4. Figures 2 and 3 compare the calculated patterns with
experimental measurements performed at NASA Langley. Measurements are
not available for the other cases. In this sequence of figures all
parameters of the slot, window and cylinder are fixed except the dielectric
constant. The electric field distribution is uniform across the inner
aperture.

All the patterns are reasonably smooth except in Fig. 5 where the
pattern breaks up into many lobes with deep nulls. With a dielectric
constant of 3, this anomalous type of pattern is observed when the aperture
half-angle is Ob = 13.8, 14.8, 15.8, 16.80, etc. When b differs from one
of these critical angles by more than 0.1 degrees, the pattern becomes
smooth again. At each critical angle, the aperture width is an integral
number of wavelengths for the lowest-order surface wave. This surface-
wave resonance phenomenon is less pronounced with a dielectric constant
of 1.2 but is observed when b = 14.6°. The effect may be reduced with
a lossy dielectric window or by reducing the reflection coefficient at
the edges of the aperture.

In these figures, the calculations are based on a two-dimensional
model with an infinitely long axial slot. A case of greater interest is
a half-wave axial slot in a long cylinder. The effects of surface-wave
resonance will be reduced with a slot of finite length.

In generating the data for Fig. 5, the execution time was 50 seconds
on a Datacraft 6024/3 computer. The solution involved a system of 20
simultaneous linear equations (N = 19 in Eqs. (18) and (30)). The
infinite series with index i (in Eqs. (32) and (34)) were truncated after
148 terms, and the series with index k (in Eqs. (12), (31) and (32)) were
truncated after 20 terms. The calculated aperture admittance was 0.372 +
j 0.122 mhos/wavelength. Identical results were obtained with N = 18 and
19, but N = 15 proved inadequate.
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Fig. 2. Far-field pattern with Er = 1.
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IV. SUMMARY AND CONCLUSIONS

This report develops the theoretical formulation for a TE axial
slot antenna radiating through a dielectric window in a circular cylinder.
Numerical results are presented for the far-field patterns, and it is
noted that the calculations show excellent agreement with experimental
measurements. The computer program is presented in the Appendices.

The solution is based on Galerkin's method. Simultaneous linear
equations are generated in which the unknown quantities are the coef-
ficients in a Fourier-series expansion for the electric field in the
outer aperture. The formulation is rapidly convergent, and the computer
program is quite efficient.
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APPENDIX I
THE MAIN COMPUTER PROGRAM

The MAIN.computer program is listed in Fig. 7. In this program
E0 is uniform across the inner aperture and the dielectric window is
lossless. Following the format statements, the dimensions are indicated
for the subscripted quantities as follows:

IDC dimension of B and V
IDH dimension of A, BHR, BB, YY, BP, YP, SNC and SGA
IDJ dimension of C, D, SGC, RBES, BEN, AJJ, etc
IDZ dimension of Z.

The input data are programmed at statement 20 with the following definitions:

AL inner radius a/A
BL outer radius b/x
ER dielectric constant 1l/eo
DPH angular increment for far-field pattern calculations
PHA Oa in degrees
PHB *b in degrees
PHC 0c in degrees

where X denotes the wavelength in free space.

At statement 30, subroutine BESSI is called for the Bessel and
Neumann functions and their derivatives. This subroutine also determines
the number of terms (denoted by KK) to be employed in the summations on k
in Eqs. (12), (31) and (32). The last call to BESSI determines the
number of terms (denoted by II) to be employed in the summations on i in
Eqs. (32) and (34). If KK is equal to IDJ, the dimension IDJ should be
increased. If II is equal to IDH, the dimension IDH should be increased.
II should exceed IMIN, and KK should exceed KMIN. NN denotes the number
of simultaneous linear equations and the number of terms to be employed
in the summations on n in Eqs. (22), (23) and (26). NN should exceed
NMIN.

For a uniform aperture distribution with V 1 volt, Eqs. (7) and
(11) yield

sin(v a)
(36) Gk 2av "

a

In the computer program, SGA(K) denotes 2aGk. Subroutine GLJ calculates
Fkn/Oc where Fkn is defined by Eq. (21). Subroutine GNJ calculates
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Gin/Oc where Gin is defined by Eq. (27). Some of the symbols used in the
program are defined as follows:

A ai
B b /k°
C Ck
D dk

V V /k

AK koa

BK k0b

AK1 kla

BK1 klb

BEN denominator in Eq. (33)

BHR Hi(b)/Hi(b)

ETA n
ETA1 n1
GNU v

RBES -Rk
SGC (sinvc)/(Vc)
SNC (sin io )/(ic )
SJN first summation in Eq. (32)

SJL second summation in Eq. (32)
YII aperture admittance Y

Z(L) Zmn

In statement 130, subroutine SQROT is called to solve the system
of simultaneous linear equations. Then the expansion coefficients ai,
ck and dk are calculated from Eqs. (22),,(23) and (26). The aperture
admittance is calculated at statement 360 with Eq. (12). Finally, the
gain is calculated with Eqs. (34) and (35).
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C TE AXIAL SLOT IN PERFECTLY CONDUCTING CIRCULAR CYLINDER. 0001

C SLOT RADIATES THROUGH DIFLFCTRIC WINDOW. 0002

C PROGRAM BY JACK H RICHMOND, OHIO STATE UNIVERSITY. 0003

COMPLEX V(30),8(30),Z(465),C(150),D(150),A(400),HHR(400) 0004

COMPLEX CO,HZ,SUMN,SUL ,SJN,Y 1 0005
DIMENSION BB(400),YY(400),BP(400),YP(400),SNC(400),SGA(400) 0006
DIMENSION SGC(150),RBES(150),BEN(150) 0007

DIMENSION AJJ(150),AYY(150),AJP(150),AYP(150) 0008

DIMENSION BJI(150),BYI(150),JP1(150),BYP1(150) 0009
EQUIVALENCE (B,V),(BB,SNC),(YY,SGA)I,(BJ1,SGC ,(BY1,RBES) 0010

DATA ETAPI,TP/376.727,3.14159,6.28318/ 0011

2 FORMAT(1X,8F15.6) 0012
4 FORMAT(1X,12110) 0013

5 FORMAT(1HO) 0014
IDC=30 0015
IDH=400 0016

IDJ=150 0017
10Z=465 0018

20 AL=18.7325 0019
BL=19.05 0020
ER=3. 0021
DPH=2. 0022

PHA=0.54 0023

PHB=14.8 0024

PHC=PHB 0025

IF(PHA.GT.PHB)PHA=PHR 0026
IF(PHC.GT.PHB)PHC=PHB 0027
N=.5+(SORT(1.+8.*IDZ)-1.)/2. 0028

IF(N.LT.IDC)IDC=N 0029
NN=IODC 0030
SQR=SQRT(ER) 0031
ETAI=ETA/SQR 0032
TL=BL-AL 0033
WRITE(6,2)AL,BL,TL,ERPHA,PHB,PHC 0034

WRITE(6,5) 0035

AK=TP*AL 0036

BK=TP*BL 0037

AKL=AK*SOR 0038
BK1=BK*SQR 0039
PHAR=.0174533*PHA 0040

PHBR=.0174533*PHB 0041

PHCR=.0174533*PHC 0042
GNU=PI/PHBR 0043

30 CALL BESSI(AK1,GNUAJJ,AYYAJPAYP9 IDJ,IODHKK 9BBYY) 0044

CALL BESSI(BK1,GNU,8J1,BY1,BJP1,BYP1,IDJ,IOH,LL ,BB,YY) 0045
CALL BESSI(BK,1.,BB,YY,8P,YP,IOH,IOH,IIBBYY) 0046

IF(LL.LT.KK)KK=LL 0047

KMIN=BK*PHR/180. 0048
IMIN=BK 0049
NMIN=BK*PHC/180. 0050
NMAX=.5+KK*PHC/PHB 0051

IF(NN.GT.IDC)NN=IDC 0052
IF(NN.GT.NMAX)NN=NMAX 0053

IF(NN.LT.1)NN=1 0054
WRITE(6,4)IMIN,II,KMIN,KK,NMIN,NN 0055

WRITE(6,5) 0056

SUMN=(.0,.0) 0057
BHR(1)=CMPLX(BB(1),-YY(1))/CMPLX(BP(l),-YP(i)) 0058
DO 60 1=2,11 0059
BHR(I)=CMPLX(BB(I),-YY(1))/CMPLX(BP(I),-YP(I)) 0060
N=I-1 0061
SC=SIN(N*PHCR)/(N*PHCR) 0062

Fig. 7. The MAIN computer program.
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SNC(I)=SC 0063

60 SUMN=SUMN+BHR(1)*SC*SC 0064
RUM1=AJP(1)*BY1(1)-8J1(1)*AYP(1) 0065
REN1=AJP(1)*BYPI(1)-iBJP(1)*AYP(1) 0066

SUML=.O 0067

SUMP=.O 0068

00 70 K=2,KK 0069
BEN(K)=AJP(K)*BYP1(K)-BJPL(K)*AYP(K) 0070

RBES(K)=(AJP(K)*RY1(K)-BJI P(K))/BEN(K) 0071

GNU=(K-1.)*PI/PHBR 0072.
SC=SIN(GNU*PHCR)/(GNU*PHCR) 0073
SGC(K)=SC 0074
SGA(K)=SIN(GNU*PHAR)/(GNU*PHAR) 0075

SUMP=SUMP+SGA(K)*SC/BEN(K) 0076

70 SUML=SUML+RBES(K)*SC*SC 0077
Z(1)=ETA1*PHBR*(.5*BHR(1)+SUMN)/(ETA*PI)-.5*RUM1/RENI-SUML 0078

Z(1)=PHCR*Z(1) 0079

V (1)=CMPLX((1./REN1+2.*SUMP)/(AK*BK),0.) 0080

IF(NN.EQO.)GO TO 130 0081

DO 120 N=1,NN 0082

MA=2 0083

IF(N.GT.2)MA=N 0084
DO 120 M=MANN 0085

SJN=(.O,.O) 0086

DO.100 I=2,11 0087

CALL GNJ(I,M,PHCR,SNCGIM) 0088
GIN=SNC(I) . 0089
IF(N.GT.1)CALL GNJ(I,N,PHCRSNCGIN) 0090

100 SJN=SJN+BHR(I)*GIM*GIN 0091
SJL=.O 0092
CJR=.O 0093

00 110 K=2,KK 0094

CALL GLJ(KMtPHBRtPHCR,SGCFKM) 0095
FKN=SGC(K) 0096

IF(N.GT.1)CALL GLJ(KNPHBR,PHCRSGCFKN) 0097
IF(N.E0.1)CJ=CJR+FKM*SGA(K)/BEN(K) 0098

110 SJL=SJL+RBES(K)*FKM*FKN 0099

L=(N-1)*NN-(N*N-N)/2+M 0100
Z(L)=(ETAxIPHBR*SJN/(ETA*PI)-SJL)*PHCR 0101

120 IF(N.EO.1)V(M)=CMPLX(2.*CJR/(AK*BKI),0.) 0102
130 CALL SOROT(Z,V,0,1,NN) 0103

A(1)=-(.0,1.)*PHCR*B(1)/(ETA*PI*CMPLX(BP(1),-YP(1))) 0104

DO 300 I=2,11I 0105
SC=SNC(I) 0106

SUL=B(1)*SC 0107

IF(NN.EQ.1)GO TO 300 0108
DO 290 N=2,NN 0109
CALL GNJ(IN,PHCR,SNC,GIN) 0110

290 SUL=SUJL+B(N)*GIN 0111
300 A(I)=-2.*PHCR*(.0,1.)*SUJL/(ETA*PI*CMPLX(BP(I),-YP(1))) 0112

C(1)=(.0,1.)*(2.*AL*PHCR*B(1)*AYP(1)-BYPI(1))/ 0113
2(2.*AL*ETA1*PHBR*REN1) 0114
D(1)=(.0,1.)*(BJPI(1)-2.*AL*PHCR*B(1)*AJP(1))/ 0115
2(2.*AL*ETAI*PHBR*REN1) 0116
DO 340 K=2,KK 0117
SA=SGA(K) 0118
REN=AL*ETA1*PHBR*BEN(K) 0119
SUL=B(I)*SGC(K) 0120
IF(NN.EQ.1)GO TO 330 0121
DO 320 N=2,NN 0122
CALL GLJ(KN,PHBR,PHCRSGC,FKN) 0123

320 SUL=SUL+B(N)*FKN 0124

Fig. 7.
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330 C(K)=-SA*BYPI(K)+2.*AL*PHCR*AYP(K)*SUL 0125
C(K)=(.0,].)*C(K)/REN 0126
D(K)=SA*BJP1(K)-2.*AL*PHCR*AJP(K)*SUL 0127

340 D(K)=(.0,1.)*D(K)/REN 0128
Y11=C(1)*AJJ(1)+D(I)*AYY(1) 0129
DO 360 K=2,KK 0130

360 Y11=Y11+(C(K)*AJJ()(K)+D((KAYY(K))*SGA(K) 0131
WRITE(6,2)Y11 0132
WRITE(6,5) 0133
GG=REAL(Y11) 0134

NPH=180./DPH+1.5 0135
DO 400 L=1,NPH 0136
PH=(L-1)*DPH 0137
PHR=.0174533*PH 0138
HZ=(.0,.O) 0139
CO=(1,,0.) 0140

DO 390 I=1,II 0141
N=I-1 0142
HZ=HZ+CQ*A(I)*COS(N*PHR) 0143

390 CO=CO*(.O,1.) 0144
HAB=CABS(HZ)/PI 0145
GAIN=TP*ETA*HAB*HAB/GG 0146

DB=10.*ALOG10(GAIN) - 0147

400 WRITE(6,2)PH,GAIN,DB 0148
CALL EXIT 0149
END 0150

Fig. 7.
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APPENDIX II
SUBROUTINE BESSI

The subroutines are listed in Figs. 8-11. BESSI is a drastically
modified and streamlined version of a program developed by Nelson Ma of
the Department of Engineering Mechanics at The Ohio State University.
This program calculates Bessel and Neumann functions and their derivatives.
The argument must be positive and real. The order is positive and real,
and it may be integer or noninteger. For the gamma function, BESSI calls
subroutine GAMMA from the IBM 360 scientific subroutine package. The
input data are defined as follows:

X argument, greater than zero

ORD order, greater than zero

IDL dimension of BJJ, BYY, BJP and BYP

IDM dimension of BJ and BY

BJ and BY are work arrays for internal use. If ORD is an integer, BJ
and BY may have the same names in the calling program as BJJ and BYY to
reduce storage requirements. This is illustrated in the third call to
BESSI in Fig. 7. The output data are defined as follows:

BJJ(I) J (x) with I = 1, 2, 3, *.* N and v= (I - l)*ORD
BYY(I) N (x)

BJP(I) J'(x)

BYP(I) N'(x)

N maximum value of I

N will not exceed IDL. If IDL and IDM are sufficiently large, N will be
determined by the condition that BJJ(N) is less than 10-6 or BYY(N) is
greater than 106. Comparison with other subroutines indicates that the
output of BESSI may be accurate even when x is as large as 2000. The
upper limit on x is not known.

One call to BESSI generates a series of Bessel and Neumann functions
with different orders. For example, if ORD = 0.5 the functions will have
orders 0, 1/2, 2/2, 3/2, 4/2, 5/2, etc. If ORD = 2, the functions will
have orders 0, 2, 4, 6, etc. These are the orders required in boundary-
value problems involving wedges and circular-sector cylinders.

BESSI uses the recursion techniques of Reference [5]. For x greater
than 10, the phase amplitude-method is employed[6].
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In line 39, the user should replace 1.E-38 with the smallest number
his computer can handle without underflow. To obtain a few more Bessel
and Neumann functions in the series, one may replace 1.E-6 with a smaller
number in line 69, and replace 1.E6 with a larger number in line 154.

To obtain the maximum available number of Bessel and Neumann
functions in the series, the required dimensions may be estimated as
follows when x is greaterthan one:

IDM = 1.2 x + 100 - 1500/(x + 20)

IDL = IDM/ORD.
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SUBROUTINE BESSI (X,ORD,BJJ,BYY,BJP,YP,IDL, IDMN,BJBY) 1
DIMENSION BJI1),BY(1),BJJ(1),BYY(1),BJP(1),BP (1) * 2
DATA A,PI/.577215665,3.14139265/ 3

DATA CO,C1,C2,C3,C4,C5,C6,C7,C8,C9,CIO,CI1,C12,C13,C14,C15,C16 4

B,C17,C18,C19,C20,C21,C22,C23,C24,C25,C26,C27/ 5

C.25,.15625,-.375,.1171875,-1.15625,1.875..952148438E-1, 6
D-2.38671875,14.2265625,-19.6875,-.809326172E-1,-4.10058593, 7

E58.2246094,-277.875,354.375,.416666667E-1,-.25,.0125,-.35, 8
F.558035718E-3,-.424107143,3.60267857,-5.625,.30381944E-2, 9
G-.486111111,10.2864583,-58.,78.75/ 10

J=O 11

IF(X.LE.O.)GO TO 1 12
IF(ORO.LE.O.)GO TO 1 13
GO TO 2 14

1 N=J-1 15
RETURN 1.6

2 EA=2./X 17
INT=ORD+.5 18
IN=IO00.*(ORD-INT) 19
TLOG=ALOG(X/2.) 20
PIH=2./PI 21
T2=1./(X*X) 22
P14=4./Pl 23

GAMM1=PIH*(A+TLOG) 24
KMAX=X+10.*(2.*X*.333333+1.) 25
SOPX=SQRT(.5*PI*X) 26
TPX=2./(PI*X) 27

10 J=J+1 28
JM=J-1 29

FNUP=JM*URU 30

N=FNUP 31
FNU=FNUP-N 32

IF(IN.EO.0)FNU=.O 33

IF(IN.EQ.O)N=l 34
NPl=N+1 35
IF(NPI.GT.IDM)GO TO 1 36

NMI=N-1 37
K=KMAX 38
IF(K.LT.NP1 .AND. IN.NE.O)GO TO 1 39
I=K 40
BJC=.0O 41
BJB=1.E-38 42
EB=EA*(I+FNU) 43

35 BJA=EB*BJB-BJC 44
IFII.LE.IDM)BJII)=BJA 45
EB=EB-EA 46
BJC=BJB 47

BJB=BJA 48
I=1-1 49
IF(I.GE.1)GO TO 35 50

IF(K.GT.IDM)K=IDM 51
M=(K-1)/2 52
IF(X.GE.1O.)GO TO 59 53
PHI=FN(U+2. 54
MO=3 55
ALF=PHI*BJ(3)+BJ(1) 56
DO 39 I=2,M 57
MO=MO+2 58

FM2=2*I 59

FM1=I-1 60
FI=I 61

TEMP=((FNU+FM2)*(FNU+FM1))/IFl*(FNU+FM2-2.0))*PHI 62

Fig. 8. Subroutine BESSI.
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PHI=TEMP 63
39 ALF=PHI*RJ(MO)+ALF 64

GAMM=GAMMA(FNU+I.) 65
ALF=EA**FNU*GAMM*ALF 66

41 AJI=1. 67
AJ2=1. 68
JAN=O 69
RALF=I./ALF 70
1)O 43 I=1,K 71
IF(JAN.EO.1)GO TO 43 72
IF(AJI.LT.1.E-6 .AND. AJ2.LT.1.E-6)JAN=l 73
BJ(I)=J(I)*RALF 74
AJI=AJ2 75
AJ2=ABS(BJ(I)) 76
IMX=I 77

43 CONTINUE 78
K=IMX 79
M=(K-1)/2 80
IF(IN.NE.0 .AND. IMX.LT.NPI)GO TO 1- 81
GO TO 100 82

59 KOUNT=1 83
GNU =FNU 84

61 ALI=GNtL**2-.25 85
A2 =CO*AL1 86

A4=(C1*AL1+C2)*AL1 87
A6=((C3*AL1+C4)*AL1+C5)*AL1 88
A8=((C6*ALI+C7)*ALI+C8)*ALI+C9)*ALI 89
A10=((((C1O*AL1+C11)*ALI+CI2)*AL1+C13) -ALI+CI4)*AL1 90
B=(((A1IOT2+A8)*T2+A6)*T2+A4)*T2+A2 91
BNU=B*T2+1.0 92

ANU=BNU/SOPX 93
A2=.5*AL 94

A4=(C15*AL1+C6 )*AL1 95
A6=((C17*AL1+C18)*AL1+.75)*AL1 96
AA=(( (C19*AL1+C20)*AL1+C21)*AL1+C22)*AL1 97
A10=((((C23*AL1+C24)*AL1+C256*AL+C+C27)AL1 98
B=(((AIO*T2+A8)*T2A6)*T2+)T2+A4)T2+A2 99
TPHI=B*T2+1.0 100
PHI=TPHI*X-(GNU+.5)/PIH 101
F1=ANU*COS(PHI) 102
YI=ANU*SIN(PHI) 103
IF(KOUNT.GT.IJGO TO 65 104
FSAVE=F1 105
BY(1)=Y1 106
GNU=FNU+1.0 107
KOUNT=2 108

GO TO 61 * 109
65 F2=Fl 110

BY(2)=Y1 111
FI=FSAVE 112

ALF=B.J(2)/F2 113
IF(ABS(F).GT.ABS(F2) )ALF=BJ(1)/FI 114

GO TO 41 115
100 IF(X.GE.10.)GO TO 150 116

ARG=FNUJ*PI 117
GARG=GAMM**2 118
IF(FNI.EO.O.)GO TO 116 119
TERM=(1./PI)*EA**(2.*FNU) 120
GAM1=COS(ARG)/SIN(ARG)-TERM*(GARG/FNU) 121
GAM2=2.0*TERM*GARG(FNU+2.0)/(1.0-FNU) 122
GO TO 117 123

116 GAM1=GAMM1 124

Fig. 8.
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GAM2=P14 125
117 BY(2)=-(I./PI)*RJ(1)*EA**(1.+2.*FNU)*GARG+(GAMI-GAM2/2.)*x8J(2) 126

YNU=GAM *B J( 1) 127
TXNU=3. O*FNU/X 128
AB=ABS(BJ(1))-0.000005 129
MP1=M+! 130
12=1 131
DO 121 I=2,MPI 132
12=12+2 133
FI=I 134
FIM=I-1 135
F 12=2*1 136
DENOM=FI*(FI-FNU)*(FN+FI2-2.0) 137
GAM3=(FNI;+FI2) (2.0*FNU+FIM)*(FNU+FIM)/fENOM 138
GAM3=-GAM *GAM2 139
YNU=GAM2*BJ( 12)+YNU 140
IF(AB.GT.0.)GO TO 120 141
E1=TXNUl*GAM2 142
BY(2)=E14BJ(12)+Y(2) 143
IF(12.GE.K)Gn TO 130 144
E1=(GAM2-GAM3)/2. 145
BY(2)=El*BJ(12+1)+BY 2) 146

120 GAM1=GAM2 147
121 GAM2=GAM3 148
130 BY(1)=YNIJ 149

IF(AB.GT.O. )BYI2)=IYNU*BJ(2)-TPX)/BJg1) 150
150 JAN=O 151

ABY=ABS(BY(2)) 152
MAX=NM1 153
IF(IN.EQ.O)MAX=K 154
DO 160 I=1,MAX 155
IF(JAN.E.I1)GO TO 160 156
IMX=I+2 157
IF(ABY.GT.1.E6)JAN=1 158
BY(I+2)=EA*(I+FNU)*BY(I+1)-BY(1) 159
ARY=ABS(RY(I+2)) 160

160 CONTINUE 161
IF(IN. EQ. 0)GO TO 300 162
IF(IMX.LT.NPI)GO TO 1 163
BJJ(J)=BJ(NP1) 164
BYY(J)=BY(NP1) 165
IF(J.GT. 1)GO TO 210 166
BJP(1)=-BJ(2) 167
BYP(I)=-RY(2) 168
GO TO 220 169

210 FAC=FNUP/X 170
BJP(J)=-FAC*BJ(NPI)+BJ(N) 171
BYP(J)=-FAC*BY(NPL)+BY(N) 172

220 IF(J.LT.IDL)GO TO 10 173
N=J 174
RETURN 175

300 BJJ(1)=BJ(1) 176
BYY(1)=BY(1) 177
BJP(1)=-RJ(2) 178
BYP(1)=-BY(2) 179
N=K 180
IF(IMX.LT.K)N=IMX 181
N=1+(N-I )/INT 182
IFIN.GT.IDL)N=IDL 183
DO 350 I=2,N 184
L=1+(I-1)*INT 185
LM=L-1 186

Fig. 8.
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BJJ(I)=BJ(L) 187

BYY( I)=BY(L) 188

FAC=LM/X 189
BJP(I)=-FAC*BJ(L)+BJ(LM) 190

350 BYP(I)=-FAC*BY(L)+6Y(LM) 191
RETURN 192
END 193

Fig. 8.

25



SUBROUTINE SOROT(CSIWR,I12,NEO) 0001

COMPLEX C(1)iS( 1 ),SS 0002

2 FORMAT(1X,115,1F10.3,1F15.7,1IF10.0,2F5.6) 0003

3 FORMAT(1HO) 0004

N=NEO 0005

IF(112.EQ.2)GO TO 20 0006

C(1)=CSQRT(C(1)) 0007

00 4 K=2,N 0008

4 C(K)=C(K)/C(1) 0009

DO 10 1=2,N 0010
IMO=I-1 0011
IPO=I+1 0012

ID=(I-1)*N-(I*1-I)/2 0013

11=I0+1 0014
00 5 L=1,IMO 0015

LI=(L-I)*N-(L*L-L)/2+1 0016

5 C(II)=C(II)-C(LI) C(LI) 0017

C(II)=CSORT(C(II)) 0018

IF(IPO.GT.N)GO TO 10 0019

DO 8 J=IPO,N 0020

IJ=ID+J 0021

DO 6 M=1,IMO 0022

MD=(M-1)*N-(M*M-M)/2 0023

MI=MD+1 0024

MJ=MD+J 0025

6 C(IJ)=C(IJ)-C(MJ)*C(MI) 0026

8 C(IJ)=C(IJ)/C(II) 0027

10 CONTINUE 0028

20 S(1)=S(1)/C(i) 0029

DO 30 I=2,N 0030

IMO=I-1 0031

00 25 L=1,IMO 0032

LI=(L-1)*N-(L*L-L)/2+I 0033
25 S(I)=S(I)-C(LI)*S(L) 0034

II=(1-1)*N-(1*1-I)/2+I 0035

30 S(I)=S(1)/C(II) 0036

NN=((N+1)*N)/2 0037

S(N)=S(N)/C(NN) 0038

NMO=N-1 0039

DO 40 I=1,NMO 0040

K=N-I 0041

KPO=K+1 0042

KD=(K-I)*N-(K*K-K)/2 0043

DO 35 L=KPO,N 0044

KL=KD+L 0045

35 SIK)=S(K)-C(KL)*S(L) 0046

KK=KD+K 0047

40 S(K)=S(K)/C(KK) 0048

IF(IWR.LE.0) GO TO 100 0049

WRITE(6,3) 0050

CNOR=.0 0051

DO 50 I=1,N 0052

SA=CABS(S(I)) 0053

50 IF(SA.GT.CNOR)CNOR=SA 0054
IF(CNOR.LE.O.)CNOR=1. 0055

DO 60 1=1,N 0056

SS=S(I) 0057

SA=CABS(SS ) 0058

SNOR=SA/CNOR 0059

PH=.O 0060

IF(SA.GT.O.)PH=57.29578*ATAN2(AIMAG(SS),REAL(SS)) 0061

60 WRITE(6,2)I,SNOR,SA,PH,SS 0062

Fig. 9. Subroutine SQROT.
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WRITE(6,3) 0063

100 RETURN 0064
END 0065

Fig. 9.
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SUBROUTINE GLJ(LL,JJ,PHBR,PHCR,SGC,FLJ) 0001
DIMENSION SGC(150) 0002
DATA PI/3.14159/ 0003
J=JJ-1 0004
SGJ=(-1)**J 0005
L=LL-1 0006
FLJ=.5 0007
GNU=L*PI/PHBR 0008
SC=SGC(LL) 0009
GNUS=GNU*GNU 0010
TEST=ABS(GNU-J*PI/PHCR) 0011
DEN=GNUS-(J*PI/PHCR)**2 0012
IF(TEST.GT..OO1)FLJ=SGJ*GNUS*SC/DEN 0013
RETURN 0014
END 0015

Fig. 10. Subroutine GLJ.

SUBROUTINE GNJ(M,JJ,PHCRSNC,FNJ) 0001
DIMENSION SNC(150) 0002
DATA PI/3.14159/ 0003
J=JJ-1 0004
SGJ=(-1)**J 0005
N=M-1 0006
NS=N*N 0007
SC=SNC(M) 0008
FNJ=.5 0009
TEST=ABS(N-J*PI/PHCR) 0010
DEN=NS-(J*PI/PHCR)**2 0011
IF(TEST.GT..001)FNJ=SGJ*NS*SC/DEN 0012
RETURN 0013
END 0014

Fig. 11. Subroutine GNJ.
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APPENDIX III
SUBROUTINE SQROT

This subroutine considers the matrix equation ZI = V which represents
a system of simultaneous linear equations. If the square matrix Z is
symmetric, SQROT is useful for obtaining the solution I with V given.
NEQ denotes the number of simultaneous equations and the size of the
matrix Z.

On entry to SQROT, S is the excitation column V. On exit, the
solution I is stored in S. Let Z(I,J) denote the symmetric square matrix.
On entry to SQROT, the upper-right triangular portion of Z(I,J) is stored
by rows in C(K) with

(37) K = (I - 1)*NEQ - (I*I - I) / 2 + J.

If 112 = 1, SQROT will transform the symmetric matrix into the auxiliary
matrix (implicit inverse), store the result in C(K) and use the auxiliary
matrix to solve the simultaneous equations. If 112 = 2, this indicates
that C(K) already contains the auxiliary matrix.

The transformation from the symmetric matrix to the auxiliary
matrix is programmed above statement 10, and the solution of the simul-
taneous equations is programmed in statements 20 to 40. If IWR is
positive, the program below statement 40 will write the solution.

SQROT uses the square root method described in Reference [4]. The
original symmetric matrix Z and the upper triangular auxiliary matrix A
are related by

(38) Z = A' A

where A' is the transpose of A.

The determinant of the symmetric matrix Z may be obtained by
squaring the product of the diagonal elements in the auxiliary matrix.

SQROT was developed by Dr. Robert G. Wickliff Jr., now with Hewlett
Packard, Colorado Springs, Colorado 80907.
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